3.1.38 \(\int \frac {a+b x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx\) [38]

Optimal. Leaf size=206 \[ \frac {b x \sqrt {c+d x^2}}{d \sqrt {e+f x^2}}-\frac {b \sqrt {e} \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{d \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {a \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}} \]

[Out]

b*x*(d*x^2+c)^(1/2)/d/(f*x^2+e)^(1/2)-b*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticE(x*f^(1/2)/e^(1/2)/(1
+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*e^(1/2)*(d*x^2+c)^(1/2)/d/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)
^(1/2)+a*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/
2))*e^(1/2)*(d*x^2+c)^(1/2)/c/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 206, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {545, 429, 506, 422} \begin {gather*} \frac {a \sqrt {e} \sqrt {c+d x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {b \sqrt {e} \sqrt {c+d x^2} E\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{d \sqrt {f} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac {b x \sqrt {c+d x^2}}{d \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]

[Out]

(b*x*Sqrt[c + d*x^2])/(d*Sqrt[e + f*x^2]) - (b*Sqrt[e]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]],
1 - (d*e)/(c*f)])/(d*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (a*Sqrt[e]*Sqrt[c + d*x^
2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*S
qrt[e + f*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {a+b x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx &=a \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx+b \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx\\ &=\frac {b x \sqrt {c+d x^2}}{d \sqrt {e+f x^2}}+\frac {a \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}-\frac {(b e) \int \frac {\sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{d}\\ &=\frac {b x \sqrt {c+d x^2}}{d \sqrt {e+f x^2}}-\frac {b \sqrt {e} \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{d \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {a \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 2.95, size = 131, normalized size = 0.64 \begin {gather*} -\frac {i \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} \left (b e E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )+(-b e+a f) F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )\right )}{\sqrt {\frac {d}{c}} f \sqrt {c+d x^2} \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]

[Out]

((-I)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*(b*e*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + (-(b*e) +
a*f)*EllipticF[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(Sqrt[d/c]*f*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 158, normalized size = 0.77

method result size
default \(\frac {\left (\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a f -\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b e +\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b e \right ) \sqrt {\frac {f \,x^{2}+e}{e}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}{f \sqrt {-\frac {d}{c}}\, \left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right )}\) \(158\)
elliptic \(\frac {\sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}\, \left (\frac {a \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {b e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \left (\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )-\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, f}\right )}{\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(249\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*f-EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*e+EllipticE(x*(-d/c
)^(1/2),(c*f/d/e)^(1/2))*b*e)*((f*x^2+e)/e)^(1/2)*((d*x^2+c)/c)^(1/2)*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2)/f/(-d/c)
^(1/2)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)/(sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b x^{2}}{\sqrt {c + d x^{2}} \sqrt {e + f x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)/(d*x**2+c)**(1/2)/(f*x**2+e)**(1/2),x)

[Out]

Integral((a + b*x**2)/(sqrt(c + d*x**2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)/(sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {b\,x^2+a}{\sqrt {d\,x^2+c}\,\sqrt {f\,x^2+e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)/((c + d*x^2)^(1/2)*(e + f*x^2)^(1/2)),x)

[Out]

int((a + b*x^2)/((c + d*x^2)^(1/2)*(e + f*x^2)^(1/2)), x)

________________________________________________________________________________________